62 research outputs found

    Asplenium bird's nest ferns in rainforest canopies are climate-contingent refuges for frogs

    Get PDF
    Epiphytes are important for canopy dwelling organisms because they provide a cool and moist microhabitat in the relatively hot and dry canopy. Here we examine whether epiphytic Asplenium ferns act as important habitats for arboreal frogs. We conducted extensive fern and habitat surveys for frogs in the Philippines, and complimented these surveys with roaming day and night canopy surveys to identify the full extent of habitat use across the vertical strata. We artificially dried ferns of various sizes to identify relationships between water and temperature buffering. Ferns are the preferred diurnal microhabitat and breeding habitat for arboreal frogs. A strong positive relationship exists between fern size and frog usage and abundance. Our drying experiments show that large ferns buffer maximum temperatures and reduce variability in temperatures, and buffering is directly linked to their hydration. Frogs are likely using large ferns for their moist, cool, environments for breeding and daytime retreat, which supports the buffered microhabitat hypothesis—these plants promote species coexistence through habitat creation and amelioration of physical stress. However, drying experiments suggest that this buffering is contingent on regular rainfall. Altered rainfall regimes could lead to the unexpected loss of the functional capacity of these important fern habitats

    Diversity and distribution of the dominant ant genus anonychomyrma (Hymenoptera: Formicidae) in the Australian wet tropics

    Get PDF
    Anonychomyrma is a dolichoderine ant genus of cool-temperate Gondwanan origin with a current distribution that extends from the north of southern Australia into the Australasian tropics. Despite its abundance and ecological dominance, little is known of its species diversity and distribution throughout its range. Here, we describe the diversity and distribution of Anonychomyrma in the Australian Wet Tropics bioregion, where only two of the many putative species are described. We hypothesise that the genus in tropical Australia retains a preference for cool wet rainforests reminiscent of the Gondwanan forests that once dominated Australia, but now only exist in upland habitats of the Wet Tropics. Our study was based on extensive recent surveys across five subregions and along elevation and vertical (arboreal) gradients. We integrated genetic (CO1) data with morphology to recognise 22 species among our samples, 20 of which appeared to be undescribed. As predicted, diversity and endemism were concentrated in uplands above 900 m a.s.l. Distribution modelling of the nine commonest species identified maximum temperature of the warmest month, rainfall seasonality, and rainfall of the wettest month as correlates of distributional patterns across subregions. Our study supported the notion that Anonychomyrma radiated from a southern temperate origin into the tropical zone, with a preference for areas of montane rainforest that were stably cool and wet over the late quaternary

    Vertical niche and elevation range size in tropical ants: implications for climate resilience

    Get PDF
    Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia. Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth, our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists—from oceans to forest ecosystems—vertical niche breadth is a potential mechanism driving macrogeographic distributional patterns and resilience to climate change

    Infection increases vulnerability to climate change via effects on host thermal tolerance

    Get PDF
    Unprecedented global climate change and increasing rates of infectious disease emergence are occurring simultaneously. Infection with emerging pathogens may alter the thermal thresholds of hosts. However, the effects of fungal infection on host thermal limits have not been examined. Moreover, the influence of infections on the heat tolerance of hosts has rarely been investigated within the context of realistic thermal acclimation regimes and potential anthropogenic climate change. We tested for effects of fungal infection on host thermal tolerance in a model system: frogs infected with the chytrid Batrachochytrium dendrobatidis. Infection reduced the critical thermal maxima (CTmax) of hosts by up to ~4 °C. Acclimation to realistic daily heat pulses enhanced thermal tolerance among infected individuals, but the magnitude of the parasitism effect usually exceeded the magnitude of the acclimation effect. In ectotherms, behaviors that elevate body temperature may decrease parasite performance or increase immune function, thereby reducing infection risk or the intensity of existing infections. However, increased heat sensitivity from infections may discourage these protective behaviors, even at temperatures below critical maxima, tipping the balance in favor of the parasite. We conclude that infectious disease could lead to increased uncertainty in estimates of species’ vulnerability to climate change

    Forest microclimates and climate change: importance, drivers and future research agenda

    Get PDF
    Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km(2) resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km(2) pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10 degrees C (mean = 3.0 +/- 2.1 degrees C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 +/- 2.3 degrees C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 +/- 2.3 degrees C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.Peer reviewe

    Assisting adaptation in a changing world

    Get PDF
    Today, all ecosystems are undergoing environmental change due to human activity, and in many cases the rate of change is accelerating due to climate change. Consequently, conservation programs are increasingly focused on the response of organisms, populations, and ecosystems to novel conditions. In parallel, the field of conservation biology is developing and deploying new tools to assist adaptation, which we define as aiming to increase the probability that organisms, populations, and ecosystems successfully adapt to ongoing change in biotic and abiotic conditions. Practitioners are aiming to assist a suite of adaptive processes, including acclimatization, range shifts, and evolution, at the individual and population level, while influencing the aggregate of these responses to assist ecosystem reorganization. The practice of assisting adaptation holds promise for environmental conservation, but effective policy and implementation will require thoughtful consideration of potential social and biological benefits and risks

    The World's Rediscovered Species: Back from the Brink?

    Get PDF
    Each year, numerous species thought to have disappeared are rediscovered. Yet, do these rediscoveries represent the return of viable populations or the delayed extinction of doomed species? We document the number, distribution and conservation status of rediscovered amphibian, bird, and mammal species globally. Over the past 122 years, at least 351 species have been rediscovered, most occurring in the tropics. These species, on average, were missing for 61 years before being rediscovered (range of 3–331 years). The number of rediscoveries per year increased over time and the majority of these rediscoveries represent first documentations since their original description. Most rediscovered species have restricted ranges and small populations, and 92% of amphibians, 86% of birds, and 86% of mammals are highly threatened, independent of how long they were missing or when they were rediscovered. Under the current trends of widespread habitat loss, particularly in the tropics, most rediscovered species remain on the brink of extinction

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.publishedVersio
    corecore